Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Sci ; 40(2): 249-261, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882956

RESUMO

Bovine clinical mastitis has significant repercussions for farmers across the globe. Meloxicam, a COX-2 inhibitor, attenuates mastitis symptoms and is also approved for veterinary use. An RP-HPLC (Reverse Phase-High Performance Liquid Chromatography) method development and validation is essential in the pharmaceutical industry to assess API (Active Pharmaceutical Ingredient) quantity present in the pharmaceutical dosage forms. RP-HPLC method of meloxicam was developed and optimized with the aid of QbD (Quality by Design) using Box-Behnken design (BBD). The pH of the aqueous mobile phase, acetonitrile (ACN) percentage, and column temperature were chosen as influence variables, and retention time (RT) and tailing factor (Tf) were selected as response variables. The optimum experimental conditions were selected as pH ~ 3 of the aqueous mobile phase, 65% v/v ACN, and 30˚C as column temperature. The drug was eluted at 6.02 min RT with 1.18 as Tf. The method was subjected to validation for accuracy, linearity, precision, range, sensitivity, and robustness and was found to comply with ICH Q2 (R1) guidelines. The in vitro bioequivalent studies were performed in hydrochloric acid, pH ~ 1.2; acetate buffer, pH ~ 4.5; and phosphate buffer, pH ~ 6.8 for two veterinary brands of meloxicam tablets, and their release profiles were compared by mathematical models. Both the brands, brand 1 and 2 exhibited significant (Unpaired t-test, P < 0.05) differences in dissolution efficiency (DE) and mean dissolution time (MDT) except DE at pH 1.2. However, brands 1 and 2 showed similarity (f2 > 50) in terms of release of meloxicam except at pH 6.8 (f2 = 47.01). The in vitro release of meloxicam followed Peppas kinetics except for brand 2 at pH 6.8, where it followed the Higuchi model. Moreover, the recovery of meloxicam extracted with ACN in the milk sample was estimated to be 99.67 ± 0.58% significantly (Unpaired t-test, P < 0.05) higher than 90.34 ± 6.77% extracted with methanol. In conclusion, the optimized and validated RP-HPLC method of meloxicam may further be used for the analysis of drug content in pharmaceutical dosage forms in addition to biological fluids.


Assuntos
Mastite , Leite , Animais , Bovinos , Feminino , Humanos , Meloxicam , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Comprimidos
2.
AAPS PharmSciTech ; 24(5): 126, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37226032

RESUMO

The current research was aimed to synthesize a phytomolecule, naringenin (NRG)-mediated silver nanoparticles (NRG-SNPs) to study their antifungal potential against Candida albicans (C. albicans) and Candida glabrata (C. glabrata). The NRG-SNPs were synthesized by using NRG as a reducing agent. The synthesis of NRG-SNPs was confirmed by a color change and surface plasmon resonance (SPR) peak at 425 nm. Furthermore, the NRG-SNPs were analyzed for size, PDI, and zeta potential, which were found to be 35 ± 0.21 nm, 0.19 ± 0.03, and 17.73 ± 0.92 mV, respectively. In silico results demonstrated that NRG had a strong affinity towards the sterol 14α-demethylase. The docking with ceramide revealed the skin permeation efficiency of the NRG-SNPs. Next, the NRG-SNPs were loaded into the topical dermal dosage form (NRG-SNPs-TDDF) by formulating a gel using Carbopol Ultrez 10 NF. The MIC50 of NRG solution and TSC-SNPs against C. albicans was found to be 50 µg/mL and 4.8 µg/mL, respectively, significantly (P < 0.05) higher than 0.3625 µg/mL of NRG-SNPs-TDDF. Correspondingly, MIC50 results were calculated against C. glabrata and the results of NRG, TSC-SNPs, NRG-SNPs-TDDF, and miconazole nitrate were found to be 50 µg/mL, 9.6 µg/mL, 0.3625 µg/mL, and 3-µg/mL, respectively. Interestingly, MIC50 of NRG-SNPs-TDDF was significantly (P < 0.05) lower than MIC50 of miconazole nitrate against C. glabrata. The FICI (fractional inhibitory concentration index) value against both the C. albicans and C. glabrata was found to be 0.016 and 0.011, respectively, which indicated the synergistic antifungal activity of NRG-SNPs-TDDF. Thus, NRG-SNPs-TDDF warrants further in depth in vivo study under a set of stringent parameters for translating in to a clinically viable antifungal product.


Assuntos
Candidíase Cutânea , Nanopartículas Metálicas , Miconazol , Prata/farmacologia , Antifúngicos/farmacologia , Candidíase Cutânea/tratamento farmacológico , Candida albicans
3.
Biochem Biophys Res Commun ; 660: 88-95, 2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37079955

RESUMO

Meloxicam, a non-steroidal anti-inflammatory drug (NSAID) for the treatment of osteoarthritis. Despite being more effective against pain mediated by inflammation, it is associated with gastrointestinal, cardiovascular, and renal toxicity. In the current study, acute single-dose (2000 mg/kg) and subacute (500, 1000, and 2000 mg kg-1 for 28 days) dermal toxicity analyses of meloxicam emulgel were conducted in Wistar rats. Various biochemical, hematological, histopathological and immunohistochemical parameters were evaluated. The dermal LD50 (lethal dose) of meloxicam emulgel was found to be > 2000 mg/kg. No significant adverse effects of meloxicam emulgel following topical administration in subacute toxicity studies were noticed. IL-1ß was not expressed post treatment with meloxicam emulgel. IL-1ß is an influential pro-inflammatory cytokine that is decisive for host-defence consequence to injury and infection. Therefore, using data gleaned from the extant study, topical administration of meloxicam emulgel may be regarded as safe as the "no observed adverse effect level" (NOAEL) was >2000 mg/kg in experimental animals.


Assuntos
Osteoartrite , Tiazinas , Ratos , Animais , Meloxicam , Ratos Wistar , Anti-Inflamatórios não Esteroides/toxicidade , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Tiazinas/toxicidade
4.
Pharmaceutics ; 15(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111646

RESUMO

Active pharmaceutical ingredients (API) with unfavorable physicochemical properties and stability present a significant challenge during their processing into final dosage forms. Cocrystallization of such APIs with suitable coformers is an efficient approach to mitigate the solubility and stability concerns. A considerable number of cocrystal-based products are currently being marketed and show an upward trend. However, to improve the API properties by cocrystallization, coformer selection plays a paramount role. Selection of suitable coformers not only improves the drug's physicochemical properties but also improves the therapeutic effectiveness and reduces side effects. Numerous coformers have been used till date to prepare pharmaceutically acceptable cocrystals. The carboxylic acid-based coformers, such as fumaric acid, oxalic acid, succinic acid, and citric acid, are the most commonly used coformers in the currently marketed cocrystal-based products. Carboxylic acid-based coformers are capable of forming the hydrogen bond and contain smaller carbon chain with the APIs. This review summarizes the role of coformers in improving the physicochemical and pharmaceutical properties of APIs, and deeply explains the utility of afore-mentioned coformers in API cocrystal formation. The review concludes with a brief discussion on the patentability and regulatory issues related to pharmaceutical cocrystals.

5.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35215302

RESUMO

In this focused progress review, the most widely accepted methods of transdermal drug delivery are hypodermic needles, transdermal patches and topical creams. However, microneedles (MNs) (or microneedle arrays) are low-invasive 3D biomedical constructs that bypass the skin barrier and produce systemic and localized pharmacological effects. In the past, biomaterials such as carbohydrates, due to their physicochemical properties, have been extensively used to manufacture microneedles (MNs). Due to their wide range of functional groups, carbohydrates enable the design and development of tunable properties and functionalities. In recent years, numerous microneedle products have emerged on the market, although much research needs to be undertaken to overcome the various challenges before the successful introduction of microneedles into the market. As a result, carbohydrate-based microarrays have a high potential to achieve a future step in sensing, drug delivery, and biologics restitution. In this review, a comprehensive overview of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose and starch is discussed systematically. It also discusses the various drug delivery strategies and mechanical properties of biomaterial-based MNs, the progress made so far in the clinical translation of carbohydrate-based MNs, and the promotional opportunities for their commercialization. In conclusion, the article summarizes the future perspectives of carbohydrate-based MNs, which are considered as the new class of topical drug delivery systems.

6.
J Adv Pharm Technol Res ; 12(4): 345-355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820308

RESUMO

Skin permeation is an integral part of penetration of topical therapeutics. Zero order in addition to Higuchi permeation kinetic is usually preferred in topical drug delivery cargo. Penetration of therapeutic entities through epidermal barrier is a major challenge for scientific fraternity. Furthermore, penetration of therapeutic entities determines the transportation and ultimately therapeutic efficacy of topical dermal dosage forms. Apart from experimentation models, mathematical equations, in silico docking, molecular dynamics (MDs), and artificial neural network (Neural) techniques are being used to assess free energies and prediction of electrostatic attractions in order to predict the permeation phenomena of therapeutic entities. Therefore, in the present review, we have summarized the significance of kinetic equations, in silico docking, MDs, and ANN in assessing and predicting the penetration behavior of topical therapeutics through dermal dosage form. In addition, the role of chitosan biomacromolecule in modulating permeation of topical therapeutics in skin has also been illustrated using computational techniques.

7.
Asian J Pharm Sci ; 14(3): 248-264, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32104456

RESUMO

Cellulose derivatives have gained immense popularity as stabilizers for amorphous solid dispersion owing to their diverse physicochemical properties. More than 20 amorphous solid dispersion-based products that have been approved for marketing consist of cellulose derivatives as stabilizers, thus highlighting their importance in generation of amorphous solid dispersions. These polymers offer numerous advantages like drug solubilization, crystallization inhibition and improvement in release patterns of drugs. Exploring their potential and exploiting their chemistry and pH responsive behaviour have led to the synthesis of new derivatives that has broadened the scope of the use of cellulose derivatives in amorphous formulation development. The present review aims to provide an overview of different mechanisms by which these cellulose derivatives inhibit the crystallization of drugs in the solid state and from supersaturated solution. A summary of different categories of cellulose derivatives along with the newly explored polymers has been provided. A special segment on strengths, weaknesses, opportunities, and threats (SWOT) analysis and critical quality attributes (CQAs) which affect the performance of the cellulose based amorphous solid dispersion will aid the researchers in identifying the major challenges in the development of cellulose based solid dispersion and serve as a guide for further formulation development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...